On the Evaluation Complexity of Cubic Regularization Methods for Potentially Rank-Deficient Nonlinear Least-Squares Problems and Its Relevance to Constrained Nonlinear Optimization
نویسندگان
چکیده
We propose a new termination criteria suitable for potentially singular, zero or non-zero residual, least-squares problems, with which cubic regularization variants take at most O(ǫ) residualand Jacobian-evaluations to drive either the Euclidean norm of the residual or its gradient below ǫ; this is the best-known bound for potentially rank-deficient nonlinear least-squares problems. We then apply the new optimality measure and cubic regularization steps to a family of least-squares merit functions in the context of a target-following algorithm for nonlinear equality-constrained problems; this approach yields the first evaluation complexity bound of order ǫ for nonconvexly constrained problems when higher accuracy is required for primal feasibility than for dual first-order criticality.
منابع مشابه
Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملOn the Evaluation Complexity of Constrained Nonlinear Least-Squares and General Constrained Nonlinear Optimization Using Second-Order Methods
When solving the general smooth nonlinear optimization problem involving equality and/or inequality constraints, an approximate first-order critical point of accuracy ǫ can be obtained by a second-order method using cubic regularization in at most O(ǫ) problem-functions evaluations, the same order bound as in the unconstrained case. This result is obtained by first showing that the same result ...
متن کاملA Curvilinear Search for Systems of Nonlinear Equations
We propose a curvilinear search for nonlinear systems of equations and path-following methods that are very nonlinear with the dominant part in the tangent space. The curvilinear search is very easy to implement and should be used with the (Gauss-)Newton method. At the cost of one function evaluation the curvature along the search direction can be reduced. For zero residual nonlinear least squa...
متن کاملConstrained Nonlinear Least Squares: A Superlinearly Convergent Projected Structured Secant Method
Numerical solution of nonlinear least-squares problems is an important computational task in science and engineering. Effective algorithms have been developed for solving nonlinear least squares problems. The structured secant method is a class of efficient methods developed in recent years for optimization problems in which the Hessian of the objective function has some special structure. A pr...
متن کاملMultiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 23 شماره
صفحات -
تاریخ انتشار 2013